Transepithelial Fluid and Salt Re-Absorption Regulated by cGK2 Signals

نویسندگان

  • Jianjun Chang
  • Yan Ding
  • Zhiyu Zhou
  • Hong-Guang Nie
  • Hong-Long Ji
چکیده

Transepithelial fluid and salt re-absorption in epithelial tissues play an important role in fluid and salt homeostasis. In absorptive epithelium, fluid and salt flux is controlled by machinery mainly composed of epithelial sodium channels (ENaC), cystic fibrosis transmembrane conductance regulator (CFTR), Na⁺/H⁺ exchanger (NHE), aquaporin, and sodium potassium adenosine triphosphatase (Na⁺/K⁺-ATPase). Dysregulation of fluid and salt transport across epithelium contributes to the pathogenesis of many diseases, such as pulmonary edema and cystic fibrosis. Intracellular and extracellular signals, i.e., hormones and protein kinases, regulate fluid and salt turnover and resolution. Increasing evidence demonstrates that transepithelial fluid transport is regulated by cyclic guanosine monophosphate-dependent protein kinase (cGK) signals. cGK2 was originally identified and cloned from intestinal specimens, the presence of which has also been confirmed in the kidney and the lung. cGK2 regulates fluid and salt through ENaC, CFTR and NHE. Deficient cGK2 regulation of transepithelial ion transport was seen in acute lung injury, and cGK2 could be a novel druggable target to restore edematous disorder in epithelial tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudomonas aeruginosa induces changes in fluid transport across airway surface epithelia.

Fluid transport across cultures of bovine tracheal epithelium was measured with a capacitance probe technique. Baseline fluid absorption ( J v) across bovine cells of 3.2 μl ⋅ cm-2 ⋅ h-1was inhibited by ∼78% after 1 h of exposure to suspensions of Pseudomonas aeruginosa, with a concomitant decrease in transepithelial potential (TEP) and increase in transepithelial resistance ( R t). Effects of ...

متن کامل

A component of fluid absorption linked to passive ion flows in the superficial pars recta

We studied salt and water absorption in isolated rabbit superficial proximal straight tubules perfused and bathed with solutions providing oppositely directed transepithelial anion gradients similar to those which might obtain in vivo. The perfusing solution contained 138.6 mM Cl- 3.8 mM HCO-3 (pH 6.6) while the bathing solution contained 113.6 mM Cl- and 25 mM HCO-3 (pH 7.4); the system was bu...

متن کامل

P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb (TAL). In the medullary thick ascending limb (...

متن کامل

Stimulation of Cl- secretion by the mucoactive drug S-carboxymethylcysteine-lysine salt in the isolated rabbit trachea.

Ion transport by the airway epithelium contributes to the regulation of the quantity and composition of respiratory tract fluid, thereby affecting mucociliary clearance. We have investigated the effect of the mucoactive drug S-carboxymethylcysteine-lysine salt (S-CMC-Lys) on the transepithelial bioelectric properties of isolated rabbit trachea. Transepithelial potential difference (Vms), short-...

متن کامل

Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-gamma.

Human bronchial epithelial cells were treated in vitro with interferon-gamma or tumor necrosis factor-alpha to assess their effect on transepithelial ion transport. Short-circuit current measurements revealed that Na(+) absorption was markedly inhibited by interferon-gamma (10-1,000 U/ml). The cystic fibrosis transmembrane conductance regulator was also downregulated by interferon-gamma as evid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018